косматый корень шелковицы, тутового дерева - definição. O que é косматый корень шелковицы, тутового дерева. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é косматый корень шелковицы, тутового дерева - definição

Три дерева (Рембрандт); Три дерева

Корень (грамматика)         
ЧАСТЬ СЛОВА, НЕСУЩАЯ ОСНОВНОЙ ЕГО СМЫСЛ
Корень слова; Корень (часть слова); Корень (морфема); Корень (лингвистика); Корень, часть слова
Ко́рень — морфема, несущая лексическое значение слова (или основную часть этого значения); в русском языке корень имеется во всех самостоятельных частях речи и отсутствует во многих служебных частях речи, междометиях и звукоподражательных словах (например, его нет в союзе «и», междометии «ах» и подобных лексических единицах). В сложных словах — несколько корней.
Извлечение корня         
  • График функции арифметического квадратного корня
  • квадратного корня]]: каждому значению <math>x</math>, кроме нуля, соответствуют два значения корня <math>(y),</math> различающиеся знаком
  • Корни третьей и шестой степени из единицы]] (вершины треугольника и шестиугольника соответственно)
  • <center>Вавилонская табличка (около 1800—1600 г. до н. э.) с вычислением <math>\sqrt{2} \approx 1 + 24/60 + 51/60^2 + 10/60^3</math><br> <math>= 1{,}41421296\dots</math></center>
ФУНКЦИЯ, ОБРАТНАЯ ВОЗВЕДЕНИЮ В СТЕПЕНЬ
Арифметический корень; Корень n-й степени; Извлечение корня; Свойства корня; Корень числа; Комплексный корень; Комплексные корни

алгебраическое действие, обратное возведению в степень (См. Возведение в степень). Извлечь корень n-й степени из числа а - это значит найти такое число (или числа) x, которое при возведении в n-ю степень даст данное число (xn = а); число х (обозначается ) называется корнем, n - показателем корня, а - подкоренным выражением. Знак есть измененное написание буквы r (лат. radix - корень). Например, среди мнимых чисел имеются ещё два корня Корень 2-й степени называется квадратным (обозначается ), корень 3-й степени - кубическим. Задача И. к. n-й степени из числа а эквивалентна решению двучленного уравнения (См. Двучленное уравнение) xn - а = 0. Это уравнение имеет n решений, следовательно, существует n корней из числа а. Если а - действительное положительное число, то один из корней (называемый арифметическим) будет также действительным и положительным; под задачей И. к. часто понимают нахождение именно арифметического корня. Корни из рациональных чисел не всегда рациональны, поэтому возникает вопрос о нахождении их приближённых значений. При вычислении корней пользуются логарифмическими таблицами или специальными таблицами корней. См. также Корень.

Лит.: Брадис В. М., Четырёхзначные математические таблицы, 41 изд., М., 19703 Барлоу П., Таблицы квадратов, кубов, квадратных корней, кубических корней и обратных величин всех целых чисел до 12500, М., 1965.

ИЗВЛЕЧЕНИЕ КОРНЯ         
  • График функции арифметического квадратного корня
  • квадратного корня]]: каждому значению <math>x</math>, кроме нуля, соответствуют два значения корня <math>(y),</math> различающиеся знаком
  • Корни третьей и шестой степени из единицы]] (вершины треугольника и шестиугольника соответственно)
  • <center>Вавилонская табличка (около 1800—1600 г. до н. э.) с вычислением <math>\sqrt{2} \approx 1 + 24/60 + 51/60^2 + 10/60^3</math><br> <math>= 1{,}41421296\dots</math></center>
ФУНКЦИЯ, ОБРАТНАЯ ВОЗВЕДЕНИЮ В СТЕПЕНЬ
Арифметический корень; Корень n-й степени; Извлечение корня; Свойства корня; Корень числа; Комплексный корень; Комплексные корни
алгебраическое действие, обратное возведению в степень. Извлечь корень n-й степени из числа а - значит найти все такие числа (или число) х, которые при возведении в n-ю степень дают данное число (хn = а). Напр.,.

Wikipédia

Три дерева (гравюра Рембрандта)

«Три дерева» (нидерл. De drie bomen, англ. B212 The three trees 1643) — офорт Рембрандта, существующий в единственном состоянии. Это самый большой офорт Рембрандта с пейзажем. Изображение трудно интерпретировать, хотя некоторые исследователи высказывают предположение, что три дерева символизируют три креста.

Появление странноватых облаков слева от центра связано с тем, что Рембрандт использовал пластину с отвергнутым наброском для ранее созданного офорта «Успение богородицы» (англ. B99 The death of the Virgin 1639). Подпись автора и дата видны с большим трудом.

O que é Корень (грамматика) - definição, significado, conceito